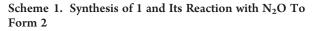
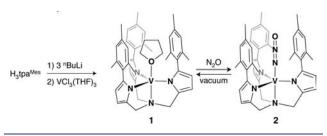


A Structurally Characterized Nitrous Oxide Complex of Vanadium

Nicholas A. Piro,[†] Michael F. Lichterman,[†] W. Hill Harman,^{†,§} and Christopher J. Chang^{*,†,‡,§}


[†]Department of Chemistry and [‡]Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States [§]Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States


Supporting Information

ABSTRACT: Nitrous oxide (N₂O), a widespread greenhouse gas, is a thermodynamically potent and environmentally green oxidant that is an attractive target for activation by metal centers. However, N₂O remains underutilized owing to its high kinetic stability, and the poor ligand properties of this molecule have made well-characterized metal–N₂O complexes a rarity. We now report a vanadium–pyrrolide system that reversibly binds N₂O at room temperature and provide the first single-crystal X-ray structure of such a complex. Further characterization by vibrational spectroscopy and DFT calculations strongly favor assignment as a linear, N-bound metal–N₂O complex.

Titrous oxide (N_2O) is a major greenhouse gas that is 300 times more powerful than CO₂ on a per molecule basis¹ and remains the number one emission contributing to ozone depletion in the 21st century.² This molecule is an appealing oxidant owing to its thermodynamic potency and environmentally friendly nature, as oxygen atom transfer (OAT) releases N₂ as the sole byproduct; however, efforts to utilize N2O as an oxygentransfer oxidant are hindered by its high kinetic stability.³ Select transition and f-block metal complexes have been shown to activate N2O toward OAT⁴⁻¹⁰ or to insert N2O into metalligand bonds¹¹ and, in one case, to cleave the N–N bond.¹² But while phosphine-activated N₂O adducts have been captured with various Lewis acids,¹³ well-defined metal-N₂O complexes remain exceedingly rare owing to the poor ligand characteristics of this small molecule, including its low dipole moment and weak σ donor and π -acceptor properties.^{3b} Indeed, since Armor and Taube's initial report of the first metal-N₂O complex,¹⁴ to our knowledge only one other discrete metal-N2O compound has been reported,¹⁵ and neither species has been characterized by single-crystal X-ray diffraction. We now report a three-fold symmetric vanadium-pyrrolide platform that reversibly binds N2O at room temperature and the single-crystal X-ray structure of this well-defined vanadium-N2O complex. Further studies support that N₂O binds this vanadium system in a linear, N-bound fashion.

Our strategy for promoting N₂O binding to a single metal site involves creating a Lewis acidic center with π -backbonding ability but only mild reducing character. In this context, we have been exploring complexes bearing pyrrolide ligands, which have relatively low basicity and poor π -donating abilities as compared to alkyl and amido congeners. Previous work from our laboratory described the activation of N₂O using Fe(II) centers supported by substituted tris(pyrrolylmethyl)amine (tpa) ligands, ^{6e} and we

reasoned that early-metal analogues would afford more electrondeficient centers that might stabilize metal– N_2O adducts. To this end, we installed the trispyrrolide ligand [tpa^{Mes}]^{3–} onto vanadium-(III) by first treating H_3 tpa^{Mes} with 3.05 equiv of *n*-butyllithium in Et₂O and then adding a solution of the resulting Li₃(tpa^{Mes}) salt to a thawing, stirring suspension of VCl₃(THF)₃ in Et₂O (Scheme 1). This treatment results in a color change to orange-yellow, and after the mixture is warmed to room temperature and stirred for several hours, the LiCl is removed by successive extractions with Et₂O/npentane mixtures.¹⁶ This procedure affords the THF adduct of (tpa^{Mes})V as an orange powder in 70% yield. A single-crystal X-ray diffraction study reveals a trigonal bipyramidal coordination environment for $(tpa^{Mes})V(THF)$ (1), where THF is bound in the apical pocket supported by the three mesityl arms of the ligand (Supporting Information, Figure S1). At room temperature, complex 1 shows no distinguishable ¹H NMR signals and displays a μ_{eff} of 2.89(7) μ_{B} $(\text{Evans's method})^{17}$ that is consistent with an S = 1 ground state, where the two unpaired electrons are expected to reside in the nonbonding, degenerate d_{xz} and d_{yz} orbitals in the C_3 field. The observation that THF binds to the metal center in 1 is noteworthy as it suggests a high degree of Lewis acidity at vanadium; in contrast, trigonal monopyramidal vanadium complexes of the type V[(N- $(R)CH_2CH_2)_3N$], bearing more electron-donating trisamidoamine ligands, do not appreciably coordinate THF.^{6a}

Addition of 1 atm of N₂O to an Et₂O solution of 1 triggers a prompt color change from the orange color of $(tpa^{Mes})V(THF)$ to yellow, along with precipitation of a yellow powder. This solid is isolated by filtration, and analysis by IR spectroscopy reveals a strong absorption at 2289 cm⁻¹, indicative of an NNO stretch (Figure 1). The new species is NMR silent, and measurement of its susceptibility by SQUID magnetometry confirmed that an S = 1 ground state is maintained. Accordingly, we assign this complex as the monometallic N₂O adduct (tpa^{Mes})V(N₂O) (**2**, Scheme 1).

Received:December 1, 2010Published:February 2, 2011

In initial attempts to preparatively synthesize the vanadium— N_2O complex 2, we noticed that application of vacuum to solutions of 2 returned the orange color of 1. To further probe the potential reversibility of N_2O binding to the $(tpa^{Mes})V$ platform, we turned to *in situ* solution IR spectroscopy measurements. Upon introduction of N_2O to a toluene solution of 1, we observed a distinct IR absorption at 2295 cm⁻¹; when vacuum was applied to this solution, this absorption, along with the

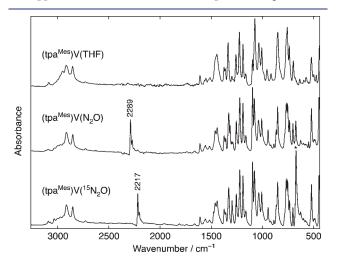
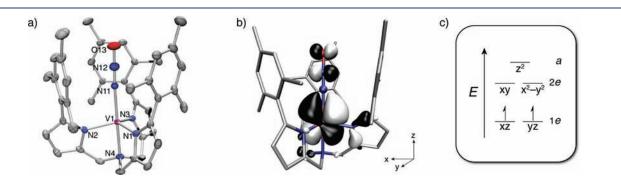


Figure 1. IR spectra of 1, 2, and $2^{-15}N$ reveal the prominent NNO stretch of 2 that shifts upon ¹⁵N-labeling (an asterisk indicates the position of residual benzene).

Table 1. Comparison of Experimental and Calculated Structures and Vibrational $Energies^a$ for 2 and Free N₂O


	2 (exptl)	2 (calcd)	N ₂ O (exptl)
r(V-N)/Å	2.139(1)	2.14	_
r(N-N)/Å	1.119(2)	1.13	1.128
r(N-O)/Å	1.187(2)	1.18	1.184
$\angle (V-N-N)/^{\circ}$	176.7(1)	179.8	_
ν_1/cm^{-1}	$1315 (1297)^b$	1313 $(1297)^b$	1286 $(1266)^{b,c}$
ν_3/cm^{-1}	2289 $(2217)^b$	2335 (2261) ^b	2224 (2156) ^{b,c}
ν_2/cm^{-1}	$551(534)^b$	$536 (520)^b$	$589 (572)^{b,c}$

^{*a*} All vibrational energies output from calculations have been scaled by a factor of 0.96. ^{*b*} Values in parentheses are those for the ¹⁵N₂O isotopomer ^{*c*} Values are taken from ref 21.

absorption for dissolved N₂O, diminished. Reintroduction of N₂O regenerated the peak associated with the formation of 2, and reapplication of vacuum again caused this absorption to vanish (Supporting Information, Figure S2). In contrast, when solid samples of 2 were subjected to vacuum for *ca*. 18 h, the N₂O absorption at 2289 cm⁻¹ remained prominent. These experiments establish that N₂O binding to the (tpa^{Mes})V system in solution is reversible at room temperature.

To provide additional support for the assignment of 2 as a metal-N2O complex, we conducted a more detailed vibrational analysis. Specifically, we synthesized the isotopically labeled $^{15}\mathrm{N}_2\mathrm{O}$ complex $(tpa^{Mes})V({}^{15}N_2O)$ (2- ${}^{15}N)$ in a manner similar to that used for the unlabeled species and acquired IR spectra on solid samples of both 2 and 2-¹⁵N. Upon ¹⁵N incorporation, the v_3 vibration of the N₂O ligand in 2 shifts from 2289 to 2217 cm⁻ (Figure 1). Comparison of the two sets of data also allowed us to assign the v_1 vibration of the NNO oscillator to an absorption at 1315 cm⁻¹ in 2 that shifts to 1297 cm⁻¹ for 2-¹⁵N (Supporting Information, Figure S3). The magnitudes of the isotopic shifts establish that the higher energy band is predominantly N-N in character, whereas the lower energy band is largely N-O in character. The energies of the N2O modes for these complexes and for free N2O are collected in Table 1. Interestingly, we observe that both the ν_1 and ν_3 vibrations of N₂O shift to higher energies upon metal binding, which is counter to expectations that π -backbonding might reduce the energy of at least one of these modes, as seen for Taube's $[(H_3N)_5Ru(N_2O)]^{2+}$ complex.¹⁴ However, N2O adsorbed onto zeolites is reported to raise the energy of both modes when the molecule binds through its nitrogen atom.¹⁸ In addition, the v_2 N₂O bending mode was also identified from the labeling study, and its energies are listed in Table 1.

We next confirmed that 2 is a well-defined metal $-N_2O$ complex by single-crystal X-ray analysis. Single crystals of 2 suitable for X-ray diffraction were grown under an atmosphere of N_2O by vapor diffusion of diisopropyl ether into a toluene solution of 2. The structure of the $(tpa^{Mes})V(N_2O)$ complex 2 confirms that the NNO ligand coordinates in a linear fashion within the apical pocket of the $(tpa^{Mes})V$ platform (Figure 2a). Lehnert and Bottomley both refer to the linear coordination mode of the NNO ligand as a signature of an N-bound isomer.¹⁹ We also assign the coordination mode of N_2O as N-bound to the metal on the basis of the observed interatomic distances and supporting DFT calculations (*vide infra*). Moreover, as the IR data do not reflect marked activation of the N_2O molecule, the N–N linkage is expected to be the shorter of the two interatomic

Figure 2. (a) Single-crystal X-ray structure of **2** with thermal ellipsoids plotted at 50% and hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): V1–N11, 2.1389(10); N11–N12, 1.1191(16); N12–O13, 1.1869(17); V1–N4, 2.1165(10); V1–N11–N12, 176.73(11). (b) One of the two degenerate SOMOs calculated for **2**, plotted at an isovalue of 0.02. (c) A d-orbital splitting diagram for the three-fold symmetric (tpa^{Mes})V platform, showing the half-filled, π -backbonding d_{xz}/d_{yz} orbitals in the C_3 field.

distances, as observed in free N₂O. The two other reported examples of well-characterized monometallic N₂O complexes, both on ruthenium, have been assigned as N-bound isomers.^{15,19} The N-bound nature of the ligand and the steric protection of the ligand "pickets" are likely contributing factors in preventing vanadium(V)—oxo formation.

As a further probe into the binding mode of N_2O in complex 2, we carried out DFT calculations using the crystallographically determined structure as a basis for geometry optimization.²⁰ When the N-bound isomer was utilized as a starting point, the structure converged on a geometry that agreed well with the input (Table 1). However, when the binding of N_2O to the vanadium center was switched to O-bound *in silico*, the N_2O ligand took on a significant bend at the oxygen atom (144°), and the bond lengths converged on a structure in which the N–O and N–N distances again resemble those in free N_2O and are not consistent with the observed crystallographic data (Supporting Information, Table S2).

The calculated vibrational frequencies for each isomer alone are inconclusive, but when free N2O is calculated using the same computational method, the picture becomes clearer. The differences between the experimental and calculated values for free N2O are nearly identical to the differences between the experimental data on 2 and those calculated for the N-bound isomer (Table S2). Therefore, we assign these deviations to a systematic error in the calculation and continue to favor an N-bound assignment based on all available experimental and computational data. Finally, from the DFT calculations, we confirmed the electronic structure of 2 and visualized the critical bonding orbitals. In the three-fold symmetric field provided by the $(tpa^{Mes})V$ platform, the d_{yz} and d_{yz} orbitals of vanadium hold the two unpaired electrons of 2, which backbond weakly into the degenerate π^* orbitals of the N₂O ligand (Figure 2b,c). The lone pair of N2O contributes to the bonding combination of all nitrogen lone pairs around the metal into d_{z^2} that falls as the HOMO-4. We suggest that the three-fold symmetric environment provides a key factor in stabilizing the putative d^2 metal $-N_2O$ adduct, as distortions to lower symmetries will weaken these π -accepting interactions.

In conclusion, we have presented the synthesis of a unique vanadium complex that reversibly binds N₂O at room temperature, the single-crystal X-ray structure of this well-defined monometallic N₂O complex, and vibrational and DFT studies to support its assignment as an N-bound metal–N₂O adduct. Efforts to use (tpa^{Mes})-V(N₂O) and related species as a source of activated N₂O in stoich-iometric and catalytic oxidation reactions are currently underway.

ASSOCIATED CONTENT

Supporting Information. Experimental details, details on DFT calculations, supporting figures, and complete ref 20; X-ray structure information in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author chrischang@berkeley.edu

ACKNOWLEDGMENT

This work was supported by DOE/LBNL Grant 403801 and the Packard Foundation. C.J.C. is an Investigator with the Howard Hughes Medical Institute. We thank the Miller Institute for Basic Research (N.A.P.) and Arkema (W.H.H.) for fellowship support. Computational facilities used in this study were funded in part by the National Science Foundation grant CHE-0840505. We thank Joe Zadrozny and Prof. Jeff Long for the acquisition of SQUID data, and Profs. F. Dean Toste and Robert G. Bergman for use of their groups' *in situ* IR spectrophotometer.

REFERENCES

(1) Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. M. B., Miller, H. L., Eds. *Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*, 2007; Cambridge University Press: Cambridge, UK, 2007.

(2) Ravishankara, A. R.; Daniel, J. S.; Portmann, R. W. Science 2009, 326, 123.

(3) (a) Leont'ev, A.; Fomicheva, O.; Proskurnina, M.; Zefirov, N. *Russ. Chem. Rev.* 2001, 70, 91. (b) Tolman, W. B. *Angew. Chem., Int. Ed.* 2010, 49, 1018.

(4) (a) Bottomley, F.; Brintzinger, H. H. J. Chem. Soc., Chem. Commun. 1978, 234. (b) Bottomley, F.; Lin, I.; Mukaida, M. J. Am. Chem. Soc. 1980, 102, 5238. (c) Bottomley, F.; Paez, D. E.; White, P. S. J. Am. Chem. Soc. 1981, 103, 5581. (d) Bottomley, F.; Paez, D. E.; White, P. S. J. Am. Chem. Soc. 1982, 104, 5651.

(5) (a) Whited, M. T.; Grubbs, R. H. J. Am. Chem. Soc. 2008, 130, 16476.
(b) Harrold, N. D.; Waterman, R.; Hillhouse, G. L.; Cundari, T. R. J. Am. Chem. Soc. 2009, 131, 12872.

(6) (a) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Inorg. Chem. 1994, 33, 1448. (b) Baranger, A. M.; Hanna, T. A.; Bergman, R. J. Am. Chem. Soc. 1995, 117, 10041. (c) Dionne, M.; Jubb, J.; Jenkins, H.; Wong, S.; Gambarotta, S. Inorg. Chem. 1996, 35, 1874. (d) Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020. (e) Harman, W. H.; Chang, C. J. J. Am. Chem. Soc. 2007, 129, 15128. (f) Andino, J. G.; Kilgore, U. J.; Pink, M.; Ozarowski, A.; Krzystek, J.; Telser, J.; Baik, M.-H.; Mindiola, D. J. Chem. Sci. 2010, 1, 351.

(7) (a) Evans, W.; Grate, J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. **1985**, 107, 405. (b) Berg, D.; Burns, C.; Andersen, R.; Zalkin, A. Organometallics **1989**, 8, 1865. (c) Smith, M., III; Matsunaga, P.; Andersen, R. J. Am. Chem. Soc. **1993**, 115, 7049. (d) Howard, W.; Trnka, T.; Waters, M.; Parkin, G. J. Organomet. Chem. **1997**, 528, 95. (e) McNeill, K.; Bergman, R. J. Am. Chem. Soc. **1999**, 121, 8260.

(8) (a) Matsunaga, P.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 2075. (b) Koo, K.; Hillhouse, G.; Rheingold, A. Organometallics 1995, 14, 456.

(9) (a) Bleeke, J.; Behm, R. J. Am. Chem. Soc. 1997, 119, 8503. (b)
Kaplan, A.; Bergman, R. Organometallics 1998, 17, 5072. (c) Lee, J.; Pink,
M.; Tomaszewski, J.; Fan, H.; Caulton, K. J. Am. Chem. Soc. 2007, 129,
8706. (d) Bar-Nahum, I.; Gupta, A.; Huber, S.; Ertem, M.; Cramer, C.;
Tolman, W. J. Am. Chem. Soc. 2009, 131, 2812.

(10) (a) Yamamoto, A.; Kitazume, S.; Pu, L.; Ikeda, S. J. Am. Chem. Soc. **1971**, 93, 371. (b) Groves, J.; Roman, J. J. Am. Chem. Soc. **1995**, 117, 5594.

(11) (a) Vaughan, G.; Rupert, P.; Hillhouse, G. J. Am. Chem. Soc. 1987, 109, 5538. (b) Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 5491. (c) Demir, S.; Montalvo, E.; Ziller, J. W.; Meyer, G.; Evans, W. J. Organometallics 2010, 29, 6608.

(12) Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C.; Protasiewicz, J. D. J. Am. Chem. Soc. **1995**, 117, 4999.

(13) (a) Otten, E.; Neu, R. C.; Stephan, D. W. J. Am. Chem. Soc.
2009, 131, 9918. (b) Neu, R. C.; Otten, E.; Stephan, D. W. Angew. Chem., Int. Ed. 2009, 48, 9709. (c) Neu, R. C.; Otten, E.; Lough, A. J.; Stephan, D. W. Chem. Sci. 2011, 2, 170.

(14) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1969, 91, 6874.

(15) Pamplin, C.; Ma, E.; Safari, N.; Rettig, S.; James, B. J. Am. Chem. Soc. 2001, 123, 8596.

(16) Incomplete removal of LiCl can result in isolation of the red complex $[\text{Li}(\text{solv})_n][(\text{tpa}^{\text{Mes}})\text{VCl}]$, which has been identified by X-ray diffraction.

(17) (a) Evans, D. F. J. Chem. Soc. **1959**, 2003. (b) Sur, S. K. J. Magn. Reson. **1989**, 82, 169.

(18) Forster, H.; Remmert, M. J. Mol. Struct. 1988, 174, 357.

(19) (a) Paulat, F.; Kuschel, T.; Nather, C.; Praneeth, V.; Sander, O.; Lehnert, N. Inorg. Chem. 2004, 43, 6979. (b) Bottomley, F.; Brooks, W. V. F. Inorg. Chem. 1977, 16, 501.

(20) Frisch, M. J.; et al. *Gaussian 09*, Revision B.1; Gaussian, Inc.: Wallingford, CT, 2009.

(21) Begun, G. M.; Fletcher, W. J. Chem. Phys. 1958, 28, 414.